Kolmogorov Complexity and Formula Size Lower Bounds

نویسندگان

  • Troy Lee
  • Troy Jeffrey Lee
چکیده

165

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

/ 06 11 05 4 v 2 2 4 A pr 2 00 7 Negative weights make adversaries stronger

The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the princ...

متن کامل

nt - p h / 06 11 05 4 v 1 5 N ov 2 00 6 Negative weights makes adversaries stronger

The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations are information-t...

متن کامل

Circuit Complexity, Kolmogorov Complexity, and Prospects for Lower Bounds

This invited Descriptional Complexity of Formal Systems lecture provides an opportunity to raise awareness of the tight connection that exists between Kolmogorov Complexity and Circuit Complexity, and to argue that this connection is useful and interesting. Kolmogorov complexity has been used to provide examples of complete sets for classes such as EXP and PSPACE that are fundamentally differen...

متن کامل

The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory

We continue an investigation into resource-bounded Kolmogorov complexity [ABK06], which highlights the close connections between circuit complexity and Levin’s time-bounded Kolmogorov complexity measure Kt (and other measures with a similar flavor), and also exploits derandomization techniques to provide new insights regarding Kolmogorov complexity. The Kolmogorov measures that have been introd...

متن کامل

Sample Size Lower Bounds in PAC Learning by Algorithmic Complexity Theory

This paper focuses on a general setup for obtaining sample size lower bounds for learning concept classes under fixed distribution laws in an extended PAC learning framework. These bounds do not depend on the running time of learning procedures and are information-theoretic in nature. They are based on incompressibility methods drawn from Kolmogorov Complexity and Algorithmic Probability theori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005